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Abstract

This paper proposes a new type of a support vector ma-
chine which uses a kernel constituted from fuzzy basis
functions. The proposed network combines the charac-
teristics both of a support vector machine and a fuzzy
system: high generalization performance, even when the
dimension of the input space is very high, structured
and numerical representation of knowledge and ability
to extract linguistic fuzzy rules, in order to bridge the
“semantic gap” between the low-level descriptors and
the high-level semantics of an image. The Fuzzy SVM
network was evaluated using images from the aceMe-
dia Repository1 and more specifically in a beach/urban
scenes classification problem.

1 Introduction

Many retrieval tasks, such as content-based image re-
trieval (CBIR) can not be performed by simply manu-
ally associating words to each image for two main rea-
sons: Firstly, with the exponential increasing quantity of
digital content, it would be a time-consuming task and
secondly because “images are beyond words”, [10], which
means that their content can not be fully described by
a list of words. As a matter of this, the extraction of
visual information directly from the images is required.
This usually called low-level features extraction.

These low-level features of an image can be efficiently
captured by visual descriptors. To achieve robust clas-
sification using features captured from the whole image
(global features), it is crucial to select an appropriate set

1http://www.acemedia.org

of descriptors in order to capture the distinctive char-
acteristics of the current problem. For instance, local
color descriptors and global color histograms are used in
indoor/outdoor classification [12] to detect e.g. vegeta-
tion (green) or sea (blue). Edge direction histograms are
employed for city/landscape classification [13] since city
images typically contain horizontal and vertical edges.
Additionally, motion descriptors are also used for sports
video shot classification [3].

However, in many cases, classification using a single
visual descriptor fails to achieve satisfactory and robust
results since a certain feature may be present and dom-
inant in more than one classes. Thus, the combination
of more than one visual descriptors is needed in order to
further increase the efficiency of the existing techniques.
For instance, in [6] by simply adding the distances be-
tween two images using various visual descriptors, the
results of the classification are improved. In [4], this
combination is achieved using Support Vector Machines,
neural and neurofuzzy networks and fuzzy rules are ex-
tracted from the latter method. Finally, Color and Tex-
ture features presented in the form of histograms are
used in [2].

Support Vector Machines are learning machines based
on statistical learning theory, that can be used for pat-
tern classification or regression. They provide high gen-
eralization performance without the need to add a priori
knowledge, even when the dimension of the input space is
very high. This ability results from their main difference
from the other types of neural networks, that they are
an exact implementation of the structural risk principle
[14].

Furthermore, Fuzzy Systems are those systems whose
variables have as domain fuzzy sets. They encode struc-
tured, empirical (heuristic) or linguistic knowledge in a
numerical framework [5]. They are able to describe the
operation of the system in natural language with the
aid of human-like IF-THEN rules. However, they do not



provide the highly desired characteristics of learning and
adaptation.

Although from a first sight the two aforementioned
learning machines seem incompatible to be combined, we
will show that a Support Vector Machine may indeed use
a kernel constituted from “fuzzy basis functions” [5] and
therefore construct a Fuzzy System. This way, semantic
information can be extracted in the form of linguistic
fuzzy rules.

The structure of this work is organized as follows: sec-
tion 2 begins with the needed theoretical background
in both the support vector machines and the fuzzy sys-
tems, to allow the reader to understand the notion of the
“Fuzzy Support Vector Machines” that follows. Then in
section 3, the MPEG-7 descriptors that capture the vi-
sual features of the images in a standardized way are
presented, followed by the experimental results in sec-
tion 4. Finally, conclusions are drawn in section 5.

2 Fuzzy Support Vector Ma-
chines

2.1 Support Vector Machines

Support Vector Machines are feed-forward networks that
can be used for pattern classification and nonlinear re-
gression. Their main idea is to construct a hyperplane
that acts as a decision space in such a way that the mar-
gin of separation between positive and negative examples
is maximized. This is generally referred as the “Optimal
Hyperplane”. This property is achieved as the support
vector machines are an approximate implementation of
the method of structural risk minimization[14]. Despite
the fact that a support vector machine does not incorpo-
rate domain-specific knowledge, it provides a good gen-
eralization performance, a unique property among the
various different types of neural networks.

An inner-product kernel between an input vector x
and a support vector xi is the main characteristic on the
support vector machines. The support vectors consist
of a small subset of the training set vectors that are ex-
tracted by the optimization algorithm. This kernel can
be implemented in various ways, thus leading to differ-
ent types of nonlinear learning machines. The most im-
portant are Polynomial learning machines, Radial-Basis
Function networks and Single-hidden layer Perceptrons,
where the kernel function is polynomial, exponential or
a hyperbolic tangent function, respectively.

The concept of the optimal hyperplane for the case
of linearly separable patterns is explained in figure 1.
Assuming that the patterns are drawn by the training
sample (xi, di)

N
i=1 and that the classes represented by the

subsets di = +1 and di = −1 are linearly separable. A
hyperplane that does the separation can be represented

Figure 1: Optimal hyperplane for linearly separable pat-
terns

by the equation:
wT x + b = 0 (1)

where x is an input vector, w is a weight vector and b a
bias. Thus, for all patterns, we may write:

wT xi + b ≥ 0 for di = +1
wT xi + b ≤ 0 for di = −1 (2)

This assumption is relaxed in the case of non linearly
separable patterns. The separation between the hyper-
plane and the closest data is called margin of separation
and the goal of the support vector machine is to con-
struct the optimal hyperplane for which this margin is
maximized.

The most common method for the optimization and
the construction of the optimal hyperplane is based on
the Lagrange multipliers’ optimization method. How-
ever, this is a very complex problem and instead, the less
complex “Least squares” optimization method is applied
[11]. The less accuracy of this method is compromised
from its fastest speed and from the fact that it leads to a
smaller number of linguistic rules. It differs from the La-
grangian because a linear system is solved instead of the
quadratic optimization that is used by the traditional
approach. The optimization function that needs to be
minimized is:

Φ(w, ξ) =
1
2
w ·wT + C

N∑

i=1

ξ2
i (3)

with the following constraints: ψi(wT φ(xi) + b) = 1 −
ξi, i = 1, 2, . . . , N . Where xi is an input vector of the
training set, ψi its response and C a user selected vari-
able. The ξi are called “slack variables” and measure
the deviation of a data point from the ideal condition
of pattern separability. Using the Lagrange Multipliers,
the cost function becomes:

Φ(w, b,a, ξ) =
1

2
w·wT +C

N∑

i=1

ξ2
i−

N∑

i=1

ai

{
ψi(w

T φ(xi) + b)− 1 + ξi

}

(4)



where a = (a1, a2, . . . , aN )T are the Lagrange multipli-
ers. It should be noted that they could take both posi-
tive and negative values. By taking the derivatives, the
following relations result:

w =
N∑

i=1

aiψiφ(xi),
n∑

i=1

aiyi = 0, ai = Cξi (5)

All these equations written in the form of matrices occur
to: (

Ω Ψ
ΨT 0

)
·
(

a
b

)
=

(
1
0

)
(6)

where the sub matrices are defined as: Ωij =
didjφ(xi)T φ(xj) + δij

C ,Ψ = (ψ1, . . . , ψN )T ,1 =

(1, . . . , 1)T and δij =
{

1 i = j
0 i 6= j

By solving the linear

system presented above, the Lagrange multipliers and
the bias result from the relations:

a = Ω−1(1−Ψb) (7)

b =
ΨT Ω−11
ΨT Ω−1Ψ

(8)

Finally, the weights of the network are calculated from
the equation:

wo =
n∑

i=1

ao,idiφ(xi) (9)

2.2 Fuzzy Sets

Each Multi-Input Multi-Output (MIMO) fuzzy system
can be divided in a number of Multi-Input Single-Output
(MISO) fuzzy sets. Thus, in this work, we consider
only MISO Fuzzy Sets, as the conclusions can be gen-
eralized for the MIMO case: f:U⊂ Rn 7→V⊂ R, where
U=U1×U2 × . . .Un ⊂ Rn is the input space and V⊂ R
is the output space.

Each fuzzy system y = f(X) = f(x1, x2, . . . , xn),X ∈
U = U1 × U2 × . . . × Un = U ∈ Rn,Aij a fuzzy set in
Uj , (j = 1, 2, . . . , n, i = 1, 2, . . . , N), may be expressed in
the following form:

y =

∏n
j=1 yi [Aij(xj)]∑n

i=1

∏n
j=1 [Aij(xj)]

=
n∑

i=1

[ ∏n
j=1 Aij(xj)∑n

i=1

∏n
j=1 [Aij(xj)]

]
yi

(10)

Thus, a fuzzy set can be represented as a linear com-
bination of the functions:

∏n
j=1 Aij(xj)∑n

i=1

∏n
j=1 [Aij(xj)]

, i = 1, 2, . . . , N (11)

These functions can be defined as basis functions of a
fuzzy system, thus are referred as “Fuzzy Basis Func-
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Figure 2: Pseudo-trapezoid function A(x; a, b, c, d, h)
with a < b < c < d

tions”. More specifically, fuzzy basis functions are de-
fined as:

Bi(X) =
Ai(X)∑N
i=1 Ai(X)

=

∏n
j=1 Aij(xj)∑n

i=1

∏n
j=1 [Aij(xj)]

(12)

where Ai(X) = Ai(x1, x2, . . . , xn),=
∏N

j=1 Aij(xj), i =
1, 2, . . . , N and a fuzzy set can be defined as:

f(X) =
N∑

i=1

Bi(X)yi (13)

Let U ∈ R the input space and the fuzzy sets Ai, i =
1, 2, . . . N in U are linguistic variables in fuzzy IF-THEN
rules and Ai(x), i = 1, 2, . . . N their fuzzy membership
functions. A pseudo-trapezoid function is a continuous
function, defined as:

A(x; a, b, c, d, h) =





I(x) x ∈ [a, b)
h x ∈ (b, c)
D(x) x ∈ (c, d]
0 x ∈ U − [a, d]

(14)

where a ≤ b ≤ c ≤ d, a < d, I(x) ≥ 0 is a monoton-
ically increasing function in [a, b) and D(x) ≤ 0 is a
monotonically decreasing function in (c, d]. In the case
where a membership function of a fuzzy set A is pseudo-
trapezoid, it is then called “Pseudo-trapezoid Member-
ship Function” (figure 2).

Fuzzy sets A1, A2, . . . , AN constitute a complete par-
tition in U if for each x ∈ U , exists Ai, 1 ≤ i ≤ N , with
Ai(x) ≥ 0.

Fuzzy sets A1, A2, . . . , AN are consistent if Ai(x0) =
1 for some x0 ∈ U , then for every j 6= i, Aj(x0) = 0.

A Fuzzy set A is normal in U , if A(x) ≥ 0 for every
x ∈ Uand there exists x0 ∈ U that A(x0) = 1.

A normal, consistent and complete fuzzy set can be
shown in figure 3.

Theorem: If the fuzzy sets Ai(x), i = 1, 2, . . . , N ,
defined in U = [a, b] are normal, consistent and complete,
with pseudo-trapezoid membership functions Ai(x) =
Ai(x; a, b, c, d), i = 1, 2, . . . , N and A1 < A2 < . . . < AN

and

f(x) =
N∑

i=1

Bi(x)yi (15)

a fuzzy set, where Bi(x), i = 1, 2, . . . , N are fuzzy basis
functions, then, for a given function g(x), continuous in
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Figure 3: Normal,consistent and complete fuzzy
set, with pseudo-trapezoid membership functions
A1(x; a1, b1, c1, d1) and A2(x; a2, b2, c2, d2)

U = [a, b] and ε > 0 a real number, there exists a fuzzy
set f(x), such as [15]:

supx∈U |g(x)− f(x)| < ε (16)

2.3 Kernel of the transformation

Let m be the dimension of the input space of the Sup-
port Vector Machine and n the dimension of the feature
(output) space. In order to find a kernel K(x,xi) that
can be used in a Support Vector Machine, there are two
different approaches [14]:

◦ Find directly the kernel K(x,xi) that satisfies the
Mercer’s Theorem

◦ Find the function φ(x) that performs the mapping
from the input to the feature space

Following the second approach, the kernel will result
from the mapping function as:

K(x,xi) = φ(x) · φ(xi) =
n∑

j=0

φj(x) · φj(xi) (17)

where xi is one of the n support vectors and x is an input
vector. The optimal hyperplane in the feature space is
given by [14]:

n∑

j=0

wjφj(x) = 0 (18)

and a fuzzy system can be represented as linear combi-
nation of fuzzy basis functions as is proved in [16]:

f(x) =
N∑

i=1

Bi(x)yi = 0 (19)

A fuzzy basis function Bi(x) is given by:

Bi(x) =

∏k
j=1 Aj

ij
(xj)∑

i1i2...ik∈I

∏k
j=1 Aj

ij
(xj)

(20)

since the denominator is a function of N vectors and
not of a single vector, as φ(x), there seems to be an
inconsistency. However, by combining the two relations,
the result is:

f(x) =
N∑

i=1

Bi(x)yi = B1(x)y1 + B2(x)y2 + . . . + BN (x)yN = 0

(21)

and since a membership function Ai(x) is given by:

Ai(x) = Ai(x1, x2, . . . , xn) =
n∏

j=1

Aij(xj) (22)

we are lead to:

1∑N
i=1 Ai(x)

(
A1(x)y1 + A2(x)y2 + . . . + AN (x)yN

)
= 0

(23)
Since

∑N
i=1 Ai(x) 6= 0, we conclude:

N∑

i=1

Ai(x)yi = 0 (24)

2.4 Clustering of the input space

It is now obvious that the fuzzy basis functions may be
used to perform the transformation to the feature space.
Since the property of the Fuzzy Systems as “universal
approximators” [15] should be satisfied as the optimal
hyperplane needs to be able to “learn” any function and
construct the optimal hyperplane in the feature space,
the support vectors should cluster the input space in a
way that the defined fuzzy sets be normal, consistent and
complete with pseudo-trapezoid membership functions.

Each constituent of an input vector belongs to a fuzzy
set Aj

ij , (i = 1, . . . ,m), (j = 1, . . . , n), where n is the
number of the support vectors. Every fuzzy set Aj

ij has
a triangular membership function Aj

ij(xj). The points of
these functions for which Aj

ij(xj) = 1 are those that cor-
respond to the constituents of the support vectors. The
width of the triangular functions is not predefined, but
defined by the support vectors. Thus, considering 3 sup-
port vectors, with consecutive coordinates, the width of
the membership function whose center is defined by the
“middle” support vector, is defined by the centers of the
two other membership functions. This representation is
chosen in order that the fuzzy sets be normal, consistent
and complete.

The construction of the fuzzy membership functions is
done in the following way: After the optimization algo-
rithm is performed in a given training set, the support
vectors are selected. Let xi one of them. Then, each
fuzzy set Aj

i (xj) has a triangular membership function
Aj

i (xj) = 4(aj
i−1, a

j
i , a

j
i+1). All the fuzzy membership

functions are constructed this way, using all n support
vectors. The fuzzy basis functions which will be used for
the transformation kernel turn up from these member-
ship functions.

A clustering of the input space by a fuzzy set is de-
picted in figure 4.
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Figure 4: Clustering of the input space by a fuzzy set A

2.5 Definition of the Transformation
Function

The membership function of a fuzzy set Ai1i2...in = Ai1×
Ai2 × . . .×Ain , i1i2 . . . in ∈ I, with I = i1i2 . . . in where
ij = 1, 2, . . . , Nj , j = 1, 2, . . . , n is defined as:

Ai1i2...im(x) = A1
i1(x1) ·A2

i2(x2) · . . . ·Am
im

(xm) (25)

using the product inference operator and x =
(x1, x2, . . . , xm) is an input vector. It should be noticed
that only those membership functions that are defined
by the support vectors are used for the construction of
the kernel.

Assuming triangular fuzzy membership functions, and
the product operator, The transformation function φ(x)
is constructed in the way that will be described.

Each fuzzy membership triangular function has the
following general form:

4(x; a, b, d) =





I(x) x ∈ [a, b)
1 x = b
D(x) x ∈ (b, d]
0 x ∈ U − [a, d]

(26)

where U ⊂ R is the input space and I(x) = x−a
b−a , I(x) =

x−d
b−d and comprises a special case of the trapezoidal mem-
bership function with b = c. Replacing a, b, d with the
coordinates of the support vectors, leads to:

Aj
ij

(x; aj
ij−1, aj

ij
, aj

ij+1) =





x−a
j
ij−1

a
j
ij
−a

j
ij−1

x ∈
[
aj

ij−1, aj
ij

)

1 x = aj
ij

x−a
j
ij+1

a
j
ij
−a

j
ij+1

x ∈
[
aj

ij
, aj

ij+1

)

0 x ∈ U −
[
aj

ij−1, aj
ij+1

]

(27)

and obviously,i1i2 . . . im ∈ I and I =
{i1i2 . . . im|ij = 1, 2, . . . , n}

Since we need only the functions that are determined
by the support vectors, it necessary to define an index set

that satisfies this demand, in order to select the correct
subset of the fuzzy membership functions. Using the
previous assumptions for the partition of the input space,
the following relationship occurs that describes explicitly
the index set I ′:

I ′ =
{
i1i2 . . . im|ij = 1, 2, . . . , n|b1

i1 , b
2
i2 , . . . , b

m
im
∈ XS

}
(28)

where XS = {xi}n
i=1 is the set of the support vectors

and obviously I ′ ⊂ I.
Fuzzy membership functions are given by:

Bi1i2...im(x) =

∏m
j=1 Aj

ij
(xj)∑

i1i2...im∈I′
∏m

j=1 Aj
ij

(xj)
(29)

From the definition of these functions becomes obvious
that exist n functions, equal to the number of the sup-
port vectors. Thus, the index set I ′ has n members.
Since φ(x) = [φ0(x)φ1(x) . . . φn(x)]T , replacing φi(x)
with Ai1i2...im

(x) using:

φi(x) = Ai(x) ≡ Ai1i2...im(x) (30)

where i1i2, . . . , im|ij = 1, 2, . . . ,m|(b1
i1

, b2
i2

, . . . , bim
m) ≡

xi is a support vector. Finally,

φ(x) = [φ0(x)φ1(x) . . . φn(x)]T = [A0(x)A1(x) . . . An(x)]T

(31)
which leads us to the kernel function:

K(x,xi) = φ(x)·φ(xi) =
n∑

j=0

φj(x)·φj(xi) =
n∑

j=0

Aj(x)·Aj(xi)

(32)
Since Aj(x) are triangular functions, constructed as pre-
viously described, the final relation for the kernel is:

K(x,xi) =
n∑

j=1

m∏

j=1

4j(xj
i−1, x

j
i , x

j
i+1)·4j(x‘ji−1, x‘ji , x‘ji+1)

(33)
where xi = (x1

i , x
2
i , . . . x

m
i ), i = (1, 2, . . . , n)

2.6 Satisfaction of the Mercer’s theorem

A basic requirement for a chosen kernel K(x,xi) is to
satisfy Mercer’s theorem [14], in order to be able to be
analyzed in a series with positive coefficients:

K(x,xi) =
∞∑

i=1

λiφi(xi)φ(xi) (34)

Since the kernel has been constructed in the way pre-
sented above, the permutation and the ability to be
analyzed in a series is a priori secured. However,
this can be proved if the following relation stands:∫ b

a

∫ b

a
K(x,x′)Ψ(x)Ψ(x′)dxdx′ ≥ 0
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Figure 5: The fuzzy support vector machine network:K
is the kernel of the transformation, xi is a support vector,
x is an input vector, wi a weight, b the bias and y the
output of the network.

for every Ψ(x). It is:
∫ b

a

∫ b

a
K(x,x′)Ψ(x)Ψ(x′)dxdx′=∫ b

a

∫ b

a

[ ∑n
i=1 Ai(x) ·A(x′)

]
Ψ(x)Ψ(x′)dxdx′=

∑n
i=1 Ij = I

Since Ij =
∫ b

a

∫ b

a
Aj(x)Ψ(x)dxAj(x′)Ψ(x′)dx′ =∫ b

a
Aj(x)Ψ(x)dx · ∫ b

a
Aj(x′)Ψ(x′)dx′ ≥ 0 It becomes ob-

vious that I ≥ 0 as a sum of non-negative quantities.
Thus, Mercer’s theorem is satisfied not only from the
chosen kernel, but from every kernel that can be written
in the form of an inner product.

2.7 Learning/Network’s Construction

Each neuron in the hidden layer can be viewed as a result
of a fuzzy “IF-THEN” rule. This means that knowledge
can be easily extracted from a fuzzy SVM network. The
network has an input layer, a single hidden layer and an
output layer and can be seen on figure 5.

Each support vector represents a fuzzy rule. Let x =
[x1, x2, . . . , xm] an input vector, xi = [xi1, xi2, . . . , xim]
a support vector and ψi its response. A fuzzy rule can
be stated as:

IF x1 is around xi1 AND x2 is around xi2 AND
. . . xm is around xim THEN x belongs to ψi

3 Feature Extraction

In order to provide standardized descriptions of audio-
visual (AV) content, MPEG-7 standard [1] specifies a set
of descriptors, each defining the syntax and the seman-
tics of an elementary visual low-level feature e.g., color,
shape. In this work, the problem of image classifica-
tion is based on the use of three MPEG-7 visual descrip-
tors which are extracted using the aceToolbox, developed
within the aceMedia project[7] and is based on the archi-
tecture of the MPEG-7 eXperimentation Model [9]. A
brief overview of each descriptor is presented below and
more details can be found in [8]

Color Layout Descriptor (CLD) is a compact and
resolution-invariant MPEG-7 visual descriptor defined in
the YCbCr color space and designed to capture the spa-
tial distribution of color in an image or an arbitrary-

shaped region. The feature extraction process consists
of four stages.

Scalable Color Descriptor(SCD) is a Haar-
transform based encoding scheme that measures color
distribution over an entire image, in the HSV color space,
quantized uniformly to 256 bins. To reduce the large size
of this representation, the histograms are encoded using
a Haar transform.

Edge Histogram Descriptor (EHD) captures the
spatial distribution of edges. Four directions of edges
(0 ◦, 45 ◦, 90 ◦, 135 ◦) are detected in addition to non-
directional ones. The input image is divided in 16 non-
overlapping blocks and a block-based extraction scheme
is applied to extract the five types of edges and calculate
their relative populations.

As it will become obvious in section 4, where sam-
ple images from the dataset we used, these descriptors
were selected in order to efficiently capture the specific
features of the beach/urban problem. A typical beach
photo contains the characteristic blue of the sky and the
sea and the grey of the sand, where in urban images the
sky is still present, but also some other characteristic
colors, e.g. from the road or the vegetation. Apart from
that, urban images typically contain horizontal and ver-
tical edges, as buildings are present and the textures of
e.g. sand and sea are different than those of e.g trees and
road. All these features are efficiently captured by the
selected MPEG-7 descriptors and fused by the proposed
network architecture.

4 Experimental Results

In order to create an input vector for the network, all
the descriptors that are used are merged into a unique
vector. This method is called merging fusion. Let
D1, D2, . . . , DM the M considered descriptors, where
each one is represented in a form of a vector. The merged
descriptor is formed as:

Dmerged = [D1|D2| . . . |DM ]

In order to avoid scale effects, all features should have
more or less the same numerical values. However, in
our case, the MPEG-7 descriptors are already scaled to
integer values of equivalent magnitude.

The aceMedia content repository database 2 was used
during these experiments. More specifically, content of
the Personal Content Services database was used. It
consists of 767 high quality color images divided in two
classes beach and urban. All the results using a single de-
scriptor are presented in table 1, while in table 2 results
using all 4 combinations of the 3 selected descriptors are
presented. For the training dataset 40 images from the

2http://driveacemedia.alinari.it/



Figure 6: Representative Images - First Row:Beach Im-
ages, Second Row: Urban Images

Descriptor Classification Rate
EH 82.5%
CL 83.5%
SC 83.6%

Table 1: Classification rate using different MPEG-7 de-
scriptors: edge histogram (EH), color layout (CL) and
scalable color (SC)

beach category and 20 from the urban were used. The re-
maining 707 (406 from beach and 301 from urban) were
used for the evaluation. A few representative images
from both categories can be seen in figure 6.

The results are better compared to those in [4] with the
use of the Falcon-ART neural network but again do not
reach those of the “Back-propagation fusion” method.
However, the use of the Fuzzy Support Vector Machine
network is able to extract linguistic fuzzy rules. An ex-
ample of an extracted fuzzy rule for the case of the Edge
Histogram descriptor follows:

IF the number of 0 ◦ edges on the upper part of
the image is low AND the number of 45 ◦ edges
on the upper part of the image is medium AND
. . . AND the number of non-directional edges on
the lower part of the image is high, THEN the
image belongs to class Beach

5 Conclusions and Future Work

The proposed network was applied successfully to the
problem of image classification using and fusing MPEG-
7 descriptors. Best results were achieved using all three
descriptors. However fusion was useful as it can provide
a linguistic description of the underlying classification
mechanism. Future work will aim to use more MPEG-7
descriptors and more classes. Additionally, this classi-
fication method may be extended in matching the seg-
ments of an image with predefined object models.
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Descriptor Classification Rate
EH+CL 83.4%
EH+SC 86.6%
CL+SC 87.7%

EH+CL+SC 91.2%

Table 2: Classification rate using all combinations of
the selected MPEG-7 descriptors: edge histogram (EH),
color layout (CL) and scalable color (SC)
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